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SUMMARY

The X-29A subsonic lift and drag characteristics determined, met, or exceeded predictions, particularly with

respect to the drag polar shapes. Induced drag levels were as great as 20 percent less than wind tunnel estimates,

particularly at coefficients of lift above 0.8. Drag polar shape comparisons with other modem fighter aircraft showed

the X-29A to have a better overall aircraft aerodynamic Oswald efficiency factor for the same aspect ratio. Two

significant problems arose in the data reduction and analysis process. These included uncertainties in angle-of-attack

upwash calibration and effects of maneuver dynamics on drag levels. The latter problem resulted from significandy

improper control surface automatic camber control scheduling. Supersonic drag polar results were not obtained

during this phase because of a lack of engine instrumentation to measure afterburner fuel flow.

INTRODUCTION

Fighter aircraft need efficient transonic aerodynamics. To achieve this, wing sweep was introduced to increase

the drag-rise Mach number and decrease drag in the early 1950s. Aft sweep was used at that time because of the

structural divergence problem of forward-swept wings. Recently, with the advent of high-strength materials and

aeroelastic tailoring, it has become feasible to incorporate forward-wing sweep without prohibitive weight penalties

(Krone, 1975). Studies spanning over 50 years indicated that for a given transonic maneuver capability, a forward-

swept wing would outperform an aft-swept wing.

To investigate the potential performance benefits and to assess the problems associated with forward-swept

wings, NASA and the Department of Defense have been conducting a forward-swept-wing technology demonstrator

program. This demonstrator aircraft, termed the X-29A, has been flown at the NASA Ames Research Center's

Dryden Flight Research Facility (Sefic and Curler, 1986). Hicks and Matheny (1987) presented preliminary flight

results from the flight envelope expansion phase.

One of the major objectives of the X-29A program was to determine the aerodynamic performance of the

forward-swept wing. Dynamic pushover-puUup and windup turn maneuvers determined aerodynamic character-

istics and calculated inflight thrust. These data have been used to calculate drag polar data over the subsonic flight

envelope. Emphasis was on aeroperformance derived from standard accelerometer test techniques rather than classi-

cal point performance. Primary interest was in obtaining induced drag polar shapes, with less emphasis on measuring

absolute drag levels. Engine instrumentation limitations prevented obtaining supersonic drag data. Flight envelope

boundaries during this phase included a maximum supersonic Mach number of 1.50, altitude of 50,000 ft, angle of

attack of 20 ° , and normal load factor of 5.7 9- This paper presents preliminary drag polar data obtained during the

flight envelope expansion phase and compares the data to the predictions. Also presented is a description of the

X-29A, including the configuration geometry, propulsion system, control system, instrumentation, and techniques

used to derive the drag polar results.

In addition to the forward-swept wing, the X-29A incorporated several advanced technologies for evaluation.

These included a close-coupled wing/canard configuration, thin supercritical airfoil for the wing, aeroelastically

tailored composite wing skins, three-surface pitch control, and active flight controls.

NOMENCLATURE

A

ACAP

ACC

AREF

ASW

geometric area, in. 2

inlet capture area

wing flaperon automatic camber control
nozzle reference area

aft-swept wing



C

CFC

c.g.

CD

CDmin

CL
CS

DINT

DSPILL

FDMS

FG

FGI

FM

FN

FR

FRL

FS

FSW

FVG

g
H
HiMAT

HPC
HPVG

L/D
LED

LPT

M

MAC

MCC

N1

N2

r_w

nzw
PCM

PLA

PLF

PS

PT

"IT

UFTAS

V

W

WFAB

WFE

WFP

wing chord length, in.

gross thrust coefficient

aircraft center of gravity

coefficient of drag

coefficient of induced drag

coefficient of parasite drag

coefficient of lift

canard station

nozzle interference drag

inlet spillage drag

flight deflection measurement system

gross thrust, lb

ideal gross thrust, lb

frequency modulation

net thrust, lb

ram drag, lb

fuselage reference line

fuselage station

forward-swept wing

fan guide vanes
earth acceleration

enthalpy, Btu

highly maneuverable aircraft technology

high-pressure compressor

high-pressure compressor guide vanes

lift-to-drag ratio

light-emitting diode

low-pressure turbine
Mach number

mean aerodynamicchord

wing flaperonmanual camber control

low-pressurecompressorrotorspeed,rpm

high-pressurecompressorrotorspeed,rpm

aircraftwind-axislongitudinalacceleration,9

aircraftwind-axisnormal acceleration,9

pulse-codemodulation

power leverangle,deg

power forlevelflight

staticpressure,Ib/in.2

totalpressure,Ib/in.2

dynamic pressure,Ib/ft2

totaltemperature,*F

uniform flight test analysis system

velocity, ft/sec

mass flow, lb/sec

afterburner fuel flow, lb/sec

main engine fuel flow, lb/sec

afterburner pilot fuel flow, lb/sec
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WIT
WL
WS
ot

6_

O'rwls'r

total fuel flow, lb/scc

water line station

wing station

angle of attack

angle of sideslip

canard deflection angle, deg

flapcron deflcction anglc, deg

strake flap deflection angle, deg

airfoil twist angle

Engine station numbers:

0

I

25

3

4

5

558

6

7

8

9

free stream

compressor face

high-pressure compressor inlet

high-pressure compressor discharge

combustor discharge

low-pressure turbine rotor discharge (after LPT cooling air mix)

low-pressure turbine discharge (measuring plane)

afterburner inlet

exhaust nozzle inlet

exhaust nozzle throat

exhaust nozzle discharge

SYSTEM DESCRIPTION

Forward-Swept-Wing Concept Benefits

The forward-swept-wing (FSVO concept promises significant performance advantages in the transonic speed

regime that may lead to new airframe design freedoms and options. These include such things as a reduction in

aircraft size and gross weight, dependent on mission, while simultaneously increasing volumetric efficiency around

the aircraft center of gravity. The FSW has been predicted to save up to 13 percent in aircraft drag for wings of the

same aspect ratio because of a substantial reduction in transonic wing profile drag compared with an aft-swept wing

(ASW) of the same aspect ratio, taper ratio, wing area, and shock location and sweep. This is primarily because

the FSW requires less leading edge sweep for the same shock sweep and location, which results in less wing twist

required to control spanwise flow and a reduction in the pressure drag contribution of the shock. The corresponding

greater sweep of the FSW trailing edge results in a greater shock sweep angle that reduces the shock strength, in turn,

reducing the wave drag and the drag due to shock-induced flow separation. The geometrical differences between the

FSW and ASW with the same shock sweep angle yield a shorter wing box length for the FSW of the same aspect

ratio and taper ratio. This lowers the wing box bending load and structural weight or, conversely, allows an increase

in the aspect ratio for the same bending load. The allowable increase in aspect ratio has an additional advantage of

increasing aerodynamic efficiency and reducing the induced drag of the wing by as much as a predicted additional

8 percent. The FSW is predicted to exhibit better lateral control at higher angles of attack than an ASW design

because of the inboard flow of air over the top of the wing, which inhibits wingtip stall and, thus, loss of aileron

effectiveness as angle of attack increases.



Other Technology Concepts

The technology of using advanced composites, coupled with aeroelastic tailoring of those composites in the

wing skins, allowed the FSW to have enough structural integrity to resist its natural tendency toward structural

divergence. Another objective was to demonstrate advanced flight control techniques in stabilizing and controlling

an unstable airframe with a close-coupled wing/canard and a three-surface pitch control system. The unusually

large, relaxed longitudinal static stability has the potential advantage of increasing transonic and high angle-of-attack

maneuverability while reducing trim drag changes with changing flight condition and enhancing overall aerodynamic

efficiency. The close-coupled wing/canard configuration allows for a better combined elliptical lift distribution than

with the wing alone. The canard also improves aircraft maneuverability and performance by contributing a positive

lift component to the wing lift for trimming, in contrast to an aft-mounted horizontal tail that produces a download

for trim, reducing net aircraft lift. The canard inhibits the FSW natural tendency toward wing root stall by injecting

high-energy air into the root region and by reducing the wing local angle of attack with canard downwash.

Other advanced technologies to improve aircraft performance include the supercritical wing airfoil and the wing

fiaperon automatic camber control (ACC) mode. The value of the supercfitical airfoil was to improve transonic

performance by delaying transonic wave drag rise to a higher subsonic Mach number. The ACC feature achieves

better off-design performance whilemaneuvering.

X-29A Aircraft

General Description. The X-29A advanced technology demonstrator (fig. 1 ) is a single-seat, fighter-type

aircraft incorporating several new technology concepts that synergistically improve aircraft performance. A special

feature of the aircraft was its active three-surface pitch control configuration. In addition to the wing flaperons,

this included the forward-mounted canards and the aft-mounted strake flaps. Extensive use was made of available

hardware not directly related to the advanced technologies, including the F-5A forward fuselage and nose gear

forward of the X-29A inlets, F-16 main landing gear and servo-actuators, and F-14 avionics.

Wing. The most notable feature is the forward-swept wing with a 29.3 ° leading edge sweep, an aspect ratio of

4.0, and a thin supercritieal airfoil section with a thickness-to-chord ratio of 5 percent. The FSW has a Grumman K,

Mod 2 supercritical airfoil cross section with a mean aerodynamic chord of 86.6 in. and a built-in wing leading edge

root-to-tip twist designed to optimize transonic performance at Mach 0.90. This aid'oil was originally developed

by the manufacturer for the HiMAT vehicle research competition. The wing twist distribution along the semispan

is shown in figure 2. The airfoil has a design coefficient of lift of 0.92 at the transonic Mach 0.90 condition. The

upper and lower surface wing skins are of a graphite-epoxy composite to aeroelastically tailor the wing deflection

and inhibit wing structural divergence. The composite layup of up to 156 plies consists of 0°/90 ° / + 45 ° laminated

strips of AS/3501/5A graphite-epoxy tape with the primary plies outboard of wing station 64, oriented 9 ° forward

of the wing structural line axis. The wing has no leading edge devices but incorporates full-span trailing edge, dual-

hinged fiaperons divided into three segments on the wing. The midwing and outboard segments are driven by a single

hydraulic actuator, housed in a fairing under the wing (fig. 3). The oversized fairing was necessary because of the

use of large government-furnished F-! 6 actuators. The inboard segment is driven by a separate actuator located near

the wing root. The flaperons automatically vary the camber of the wing for high lift during takeoff and landing and

increase aerodynamic efficiency over the flight envelope. Full flaperon travel was from 10° trailing edge up to 24.75 °

trailing edge down. The maximum flaperon deflection rate is 68°/sec. The wing root forward surface extensions of

the wing were added as an aerodynamic fairing and have no structural function. The aerodynamic reference area

of 185 ft2 does not include the canards or strake flaps and only includes the geometric projection of the trapizoidal

wing surface into the aircraft body without the forward surface extensions at the wing root leading edge.



Canard, Strake, and Rudder. The canards constitute 20 percent of the wing area and act as a powerful lift

and pitch generator. They are of a single-piece construction and travel 30° leading edge up to 60 ° leading edge

down, moving at rates of up to 100*/sec. The canards are symmetric airfoils with zero twist (fig. 2). The wing is

integrated into the fuselage using bodymounted strakes that extend to the aft end of the fuselage. The single-piece

strake flaps at the end of the body strakes travel from 30 ° trailing edge up to 30* trailing edge down. A single-piece

rudder completes the aerodynamic control configuration. Table 1 summarizes the aerodynamic surface geometries.

Flight Control System. The presence of the canards results in an otherwise neutrally stable airframe having

a negative static margin of nominally 35 percent. The large negative static margin reduced trim drag and produced

better maneuverability. This high degree of instability necessitates high levels of artificial stability augmentation

provided by the triplex digital fly-by-wire flight control system. The flight control system updates the stabilization

of the aircraft state at 40 Hz and consists of three primary flight modes: the prime normal digital mode, the digital

reversion mode, and the analog reversion mode. Each mode has both a "clean" or cruise aircraft gain scheduling,

known as "up and away," and a power approach gain scheduling. The flight control system provided trim and pitch

control integrally for symmetric deflection of three-surface pitch control configuration. Differential deflection of

the flaperons provided the sole source of roll control. The single-piece rudder provided yaw control. The control

system featured aileron-to-rudder interconnect. The two wing camber control modes included the ACC, set by the

flight control system as a function of flight condition, and the manual camber control (MCC), set in discrete 5 °

intervals by the pilot. The MCC mode was primarily a flight test mode. Figure 4 depicts the range and function of

the flaperon settings.

Propulsion System.

F404 Engine. The X-29A is powered by a General Electric F404-GE-400 turbofan engine, rated at 16,000 lb

thrust at sea level static conditions. This low-bypass fan engine with afterburner consists of a three-stage fan driven

by a single-stage, low-pressure turbine and a seven-stage, high-pressure compressor driven by a single-stage, high-

pressure turbine.

Inlets. Two fuselage-mounted side inlets supply air to the engine (fig. 5) by a bifurcated duct, ending 18

in. in front of the compressor face. To give optimum transonic performance, the inlets are of a simple, fixed-

geometry design with a 15° swept splitter plate and elliptical-inlet cowl lip geometry for good static inlet performance

and compatibility.

Aircraft Mass Properties. Maximum aircraft takeoff gross weight is 17,800 lb with a 4000-1b JP-5 fuel ca-

pacity in two fuselage and two strake tanks. Total fuel capacity was divided into 1700 lb in the forward fuel tank,

1700 lb in the feed tank, and 300 lb located in each strake tank. The aircraft had no in-flight refueling capability. The

wings were dry with no integral fuel tanks. Center of gravity range with landing gear up was small, with maximum

fuselage station variation from approximately 438 in. to 449 in. or from -25.7 percent MAC to -13.0 percent

MAC, respectively.

Instrumentation Description

The data parameter set included measurements for structural loads, structural dynamics, flight controls, stability

and control, aircraft subsystems, propulsion, and performance. Instrumentation included accelerometers, rate gyros,

strain gages, aerodynamic pressure taps, temperature and pressure monitors, a noseboom pitot-static system with
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angle-of-attackandangle-of-sideslipanglevanes,controlsurfacepositionandratemonitors,anda basicthrust
instrumentationsetfortheengine.Thethrustinstrumentationconsistedof pressure,temperature,compressorspeeds,
nozzlearea,andmainenginefuel flowmeasurementsfor engineoperationmonitoringaswell asa limitedability
tocalculatein-flight thrustlevels.Anengineschematicshowingenginestation,enginecomponents,andmeasured
parametersis shownin figure6. Theaircraftcontainedtwobody-mounted,three-axisaccelerometerpackagesfor
performanceandothermeasurements.

TheX-29Ainstrumentationsystem(fig. 7)measuredatotalof 691dataparameterstelemeteredto theground
for recording,real-timeanalysis,andcontrolroommonitoring.Theaircraftdid nothaveanonboardrecording
capability.The10-bitremoteunitpulse-codemodulation(PCM)systemsampleddatafrom25to400samples/sec,
dependingon the desired frequency range to be covered. The digital data were processed by five PCM units that

merged the data stream along with the output from the flight control computers ARINC 429 (Aeronautical Radio,

Inc.) data bus using an interleaver device. Onboard filtering was restricted to antialiasing filters only. The encrypted

data were downlinked as a single serial PCM stream. A constant-bandwidth frequency modulation (FM) system was

installed to process high-response acceleration and vibration data. This FM signal was merged with the rest of the

digital data from the interleaver and downlinked along with the pilot's voice. All telemetered data were received by

a ground station and relayed to the mission control center for real-time processing and display.

Extemal aircraft instrumentation included the pitot-static noseboom with angle-of-attack and angle-of-sideslip

angle vanes (fig. 8). The left side of the aircraft had 176 flush-mounted static pressure orifices, located in two rows

on the canard, five rows on the wing, and one row along the strake and strake flap to measure pressure distribution

(fig. 9 ). The right wing contained 12 infrared light-emitting diodes (LEDs) mounted on the top of the wing as part

of the flight deflection measurement system (FDMS). These LED targets ranged in size from 0.25 to 1.50 in. in

height. A dual receiver was mounted in the right side of the fuselage above the wing root (fig. 10 ). Finally, the

underside of each wing contained an aerodynamic fairing that contained a flight test eccentric rotary-mass flaperon

structural excitation system, in addition to housing the midboard and outboard ftaperon hydraulic-actuator.

Once received on the ground, the data were decommutated and recorded in real time on magnetic tapes for

postflight data processing. Data were also processed in real time by conversion to engineering units, filtered and

sampled where necessary, and displayed in the control room during the missions. Real-time computations were

made with some of the flight data through real-time minicomputers and displayed in real time against predictions

that were generated either preflight or in real time using actual flight states provided from the downlinked aircraft

data. Data were displayed on analog time-history strip charts as digital data or plotted graphically on video screens

and through various analog gauges and display lights in the control room.

WIND TUNNEL MODEL AND DATABASE

Several different wind tunnel and developmental FSW models were tested to determine the final X-29A con-

figuration. The final configuration was tested mostly at the NASA Ames Research Center's 11-ft and 9- by 7-

ft wind tunnels, running at Reynolds numbers from 1 to 2 × 10 6. The primary wind tunnel model was a rigid

1/8-scale model, configured for the Mach 0.90, 30,000 ft design condition. Some 1368 wind tunnel hours were

used to develop the X-29A configuration. Facilities, tests, and run times are shown in table 2. Runs were made

over a range of angle of attack up to 24° and sideslip angles to 12° at discrete Mach numbers up to 1.4. Control

surfaces were set in 5 to 10° discrete increments over their full travel range and separate measurements made at each

configuration setting. The main objectives of the wind tunnel tests were not to develop accurate drag polar models,

but rather to gather structural load information and to develop an aerodynamics database for the development of

the flight control system. Airframe drag component buildup measurements were made, but sensitive wind tunnel

drag balances were not used to measure full configuration drag levels. Inlet and nozzle model drag measurements

were not made. The wind tunnel-generated aerodynamic database was corrected for flexible structural effects using

analytical predictions. Details of the wind tunnel tests can be found in Charletta (1982) and Bowers (1984).
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FLIGHT TEST MANEUVERS

Drag polar data was obtained using pushover-pullup and windup turn dynamic flight test technique maneuvers

and 1-g stabilized points. The pushover-pullup was initiated from a stabilized 1-g flight condition at power for level

flight (PLF). The aircraft then began a pushover to zero g normal load factor at 0.2 g/sec g-onset rate. A pullup was

then made to 2 g, and a recovery to the 1-g flight condition completed the 20-sec maneuver. The constant Mach

windup turn maneuvers consisted of two different techniques. One was a constant PLF maneuver where altitude is
traded to hold constant Mach as normal load factor increased to the aim load factor or limit alpha (15 ° maximum).

The second method held constant altitude by increasing engine power to keep constant Mach as load factor was

increased to its aim value or limit alpha. The 1-g stabilized points determined position error and angle-of-attack

calibration data. Details of the X-29A flight test maneuver techniques are in Hicks and others (1987).

DATA ANALYSIS

Accelerometer Data Reduction Technique

The computer analysis program used was the uniform flight test analysis system (UFTAS) developed by the Air

Force Flight Test Center. This program consists of several subroutines that can compute flightpath accelerations by

several methods, including several accelerometer techniques. It also applies data corrections and computes test day

point-performance or drag polars. The UFTAS contains an in-flight thrust subroutine that not only allows propulsion

and test-day performance calculations, but with other subroutines in the program calculates standard-day thrust and

performance. Further details of the computer program appear in Air Force Flight Test Center, Edwards AFB (1973).

Aerodynamic drag polar data reduction was accomplished using the accelerometer method to determine longi-

tudinal and vertical (normal) accelerations in the aircraft flightpath axis system. The results were used to compute

coefficient of lift (CL) from the vertical or normal acceleration and coefficient of drag (CD) by using the longitudinal

acceleration to compute excess thrust. This was subtracted from thrust available to obtain thrust required and, thus,

drag. A body-mounted accelerometer system was used, which consisted of two separate instrumentation packages.

The first, called the center of gravity (c.g.) or coarse accelerometer package, covered a broader acceleration range

of-3 to +8 g normal acceleration and 4-1g in both the longitudinal and lateral axes. The second package was the

dynamic or fine accelerometer system, which covered a smaller acceleration range for better resolution. This range

was - 1 to +3 g normal acceleration and 4-0.6g in both the longitudinal and lateral axes. Both systems measured

the aircraft c.g. acceleration in the aircraft body-axis system, but, because they were not precisely located at the

c.g., corrections had to be made to the measured data. Accelerometers located away from the c.g. sense angular

rates and accelerations that would not be measured at the aircraft e.g. This necessitates including a rate gyro instru-

mentation package to measure these angular rates and accelerations and correct the sensed accelerations to purely

linear c.g. accelerations. Each accelerometer system had its own set of rate gyros and angular accelerometers for

this correction. In addition, once corrected to the aircraft c.g., the body-computed accelerations were transformed to

the aircraft wind-axis accelerations by using noseboom-measured angle of attack and angle of sideslip. True angle

of attack was computed by correcting the measured angle of attack for upwash, sensed pitch, noseboom bending,

fuselage bending, and misalignment errors.

In-flight Thrust Calculation Procedure

The test day in- flight thrust calculation method used was the G.E. F404 gas generator technique, developed for the

F404 engine to give accurate engine airflow and thrust over the flight envelope. The in-flight thrust program model

was developed from an extensive six-engine test program at the Naval Air Propulsion Center altitude test facility

where more than 1500 test points were gathered over the entire engine operating envelope. This extensive database,



combinedwith sealevelstatictests,produced an accurate modeling of the engine gas generator, afterbumer, and

nozzle over the operating envelope.

The thrust calculation method relies on modeling the engine gas generator from which mass flow, temperature,

and pressure at the nozzle are computed. The basic approach of the gas generator method is to combine a set of

in-flight-measured engine parameters with the engine model. The measured parameters are used where measure-

ments are more accurate than the engine model. An in-flight thrust calculation flow chart is shown in figure 11.

This gas generator ideal gross thrust is calculated based on the assumption of a fully expanded nozzle, and it is then

corrected for the actual nozzle performance by the nozzle gross thrust coefficient (GFC). The calculation proce-

dure can calculate the ideal gross thrust from either the pressure (nozzle throat)-area method or the airflow (nozzle

throat)-total temperature method. The pressure-area method is sensitive to an accurate measurement of the nozzle

throat area, whereas the airflow-temperature technique relies on an accurate exhaust gas temperature measurement,

exhaust mass flow, and an accurate afterbumer efficiency model.

The X-29A inlet model uses a wind tunnel-derived inlet pressure recovery factor, Mach and altitude to calculate

inlet conditions, and airflow to the engine compressor face. From that point, an energy rise (temperature and pressure)

is computed across the fan and high-pressure compressor sections ta obtain combustor inlet airflow, temperature, and

specific total enthalpy. The combustor and afterburner are modeled separately using an energy balance. The nozzle

model is then used to calculate nozzle gross thrust (FG) coefficient from which ideal gross thrust (FGI) is corrected

to actual FG. Calculated ram drag (FR), estimated inlet spillage, and nozzle drag components are applied to FG to

obtain net thrust (FN). A more detailed discussion of the model and calculation procedure is given in Rooney and
Wilt (1985).

A lack of afterburner fuel flow measurement, coupled with a single-point turbine exhaust pressure measurement,

resulted in estimated uninstalled thrust accuracy levels of from 5 to 8 percent, depending on flight condition. The

computed thrust to obtain a reliable measure of parasite drag (Co,ni,_) is not accurate enough. This deficiency had

less effect on determining drag polar shapes. The engine was also not thrust-calibrated, which would have improved

the accuracy of the existing instrumentation system. The afterburner fuel measurement deficiency would not allow

supersonic drag polar measurement.

Noseboom Angle-of.Attack Calibration

The noseboom angle-of-attack calibration had more uncertainty than desired. The noseboom system was a

modified F-14 flight test system. For the most part, the constant pitch attitude method from a 1-g stabilized flight

condition was used to obtain data. Another test technique was a flightpath reconstruction technique (Whimaore, 1985)

using data from radar-tracked pushover-pullups and windup turns. Both methods gave inconclusive results due to

an unusually large data scatter and a larger-than-normal apparent data bias. The aircraft was difficult to stabilize

at a zero pitch rate, which made obtaining calibration data from a 1-g stabilized flight condition very uncertain.

In addition, the noseboom exhibited several unusual characteristics such as a resonant vibration with the airframe,

which, even with 40-Hz antialiasing filters, caused the data to be very noisy. Random step changes in the angles of

attack (a) and sideslip (fl) of up to 4-0.5* were also seen while flying at the stabilized condition. There appeared to

be some type of local flow condition, shock wave interaction, or other local flow perturbations that complicated the

effort to obtain a good calibration.

An unexplained angle-of-attack bias of up to 1° developed in the upwash calibration data from both calibration

methods, although the indicated bias error was not consistent. Normally, flight test noseboom angle-of-attack cal-

ibrations are accurate to better than +0.25 ° and the system does not suffer from such large biases in the upwash

calibration. Noseboom misalignment, vane calibration, vane or noseboom damage were all checked with no sig-

nificant results to help understand the problem. Evidence indicates the pitch attitude measurement was not reliable

enough and the instrument resolution was inadequate, but this was not conclusively proven to be a significant con-

tributing factor. Analysis of the flightpath acceleration for stabilized turns at Mach 0.90 at 20,000 and 30,000 ft



wasperformedtocomparetheresultsderivedfrom the accelerometer method with that of the energy height method

(fig. 12). The accelerometer method uses angle of attack in obtaining aircraft acceleration along the flightpath,

whereas the energy height method uses airspeed and altitude only and is, thus, independent of c_ measurements. As

the energy height method shows, ftightpath acceleration in a stabilized turn should be zero, which is in agreement

with the accelerometer results using zero c_ upwash bias. This supports the conclusion that the noseboom upwash

bias was approximately zero. With no evidence to support the existence of an actual bias, a zero bias error in the a

upwash correction was used in the drag polar data reduction.

A drag polar sensitivity analysis was made to determine the impact of this czuncertainty on drag polars. A more

complete sensitivity study of factors affecting drag polar modeling can be found in Powers (1985). The bias error is

introduced into the drag polar data through the a and/3 transformation of the body-axis accelerations to the aircraft

wind axis and in computing thrust components to lift and drag. The effect can be seen in figure 13, which shows

a sensitivity of up to 200 drag counts, particularly affecting drag polar shape, but also absolute drag levels. The

inclusion of the 1° bias moves the flight test polar results closer to the wind tunnel predictions.

The decision was made at the end of the X-29 flight envelope expansion phase to replace the noseboom with a

standard NACA flight test noseboom and recalibrate the system rather than try to continue flying with the original

noseboom. This should help since the NACA noseboom is a well-proven system with known characteristics.

Drag Correction Procedure

Aerodynamic Drag Corrections. A drag correction procedure was developed by the aircraft manufacturer

and incorporated into the UFTAS performance analysis program. The purpose of this subroutine was to correct the

flight test drag data to power-off trimmed flight with the control surfaces in the ACC-schedule configuration for

comparison with wind tunnel-generated drag polar predictions. The procedure assumed small perturbation, linear

aerodynamic corrections about the trimmed-aircraft configuration. Thus, the method was developed to provide trim

drag corrections for control surface configurations that were no more than 4-5 o off the ACC schedule and for angles

of attack that were no more than 4-2" from the ACC trim schedule.

The trim drag correction procedure could not be used on some flight data because of the large trim drag errors.

These came from large control surface deviations from the ACC trim schedule during highly dynamic maneuvers.

Figure 14 shows an example of the large control surface changes from the ACC schedule. In these cases, a drag

prediction program estimated the off-ACC schedule dynamic drag levels from the wind tunnel-derived database. The

program used flight test time histories of flight conditions, angle of attack, e.g., and actual control surface positions to

query the aerodynamic database for the polar and lift curves. In this way, untrimmed flight results could be compared

to the wind tunnel predictions where needed.

Propulsion Drag Corrections. Other drag data corrections included propulsive drag adjustments to the test

day-computed gross thrust. These included ram drag corrections based on engine airflow adjusted by a wind tunnel-

derived inlet pressure recovery factor. Data for this inlet recovery factor (fig. 15) were limited because of a limited

wind tunnel test and a simplified, flow-through inlet model. The inlet spillage drag (fig. 16) and nozzle drag (fig. 17)

component corrections to the test day gross thrust were not based on wind tunnel model tests but were simply

estimated, based on results from similar fighter-type aircraft and similar inlet configurations. The component esti-

mates were considered typical of this class of aircraft and constituted at most some 2 to 3 percent of the total gross

thrust. Other polar data adjustments included corrections for the thrust moment and trim drag adjustments for off-

reference e.g.



Drag Polar Shape Comparison Methods

Trimmed and Untrimmed Prediction Comparisons. Because of the problems associated with thc off-ACC

•schedule maneuver dynamics effects, it was difficult to correct thc flight drag polars to the trimmed condition or

to compare these polars with the wind tunnel-predicted ACC-trimmcd polar shapes. In most cases, the flight test

drag polars wcre not trim-drag corrected. A number of approaches were takcn to gain a more complctc understand-

ing of the ovcrall performance of the FSW aerodynamics. These includcd comparing thc polar shapes with both

the predicted ACC optimum-trimmed polars and the wind tunn¢l-predictcd untrimmed polars. The limitation of a

comparison of flight untrimmed polars with wind tunnel-predicted untrimmed polars is that only a single maneuver

can be compared since the level of maneuver dynamics from maneuver to maneuvcr will vary. The polar shape

differences may not be totally due to aerodynamics but, rather, due in part to errors in predicted maneuver dynamics.

The untrimmed aerodynamic performance comparison could also not represent the best pcrformancc thc aircraft

was supposed to achieve with the optimum ACC trim schedule at a given coefficient of lift. For completeness, the

flight untrimmed polars were compared with both predicted ACC trimmed and dynamic untrimmed polar shapes.

Comparison with the predicted untrimmed polars gave the basic wind tunnel-to-flight test correlation and a com-

parison with the ACC trimmed polar dctermincd how wcll the untrimmed flight acrodynamic performed against thc

so-called optimum lift-to-drag performance of the ACC schcdulc configuration.

Comparison Methods With Other Aircraft. Another analytical method of comparing drag polar shapes was

undertaken to obtain a measure of the aerodynamic performance improvements of the FSW in comparison with

acknowledged modem ASW fighter designs. Several analytical approaches are possible when comparing aircraft

drag polars with other aircraft. Two techniques arc to compare the absolute polars using the reference area or the

span-squared method. The technique used here is based on the classical Prandtl method of comparing the induced

drag polar shapes by subtracting the in-flight-measured C'D,ni,, value from the drag level of each respective aircraft.

All comparison aircraft-induced drag levels are then corrected to the X-29A reference aspect ratio of 4.0. For a given

coefficient of lift range, the polar shapes are then primarily a function of the overall aircraft configuration Oswald

aerodynamic efficiency factor. The Prandtl method relies on the assumption that angle of attack is less than 20 ° and

that all aircraft basic aspect ratios are greater than or equal to 3.0. The X-29A and the comparison aircraft fulfill this

requirement. Details of the technique can be found in numerous aerodynamics textbooks such as Clancy (1975).

RESULTS AND DISCUSSION

Aircraft Configuration Changes

The X-29A external aircraft configuration was not constant during the course of the flight envelope expansion

program. The changes, summarized in table 3, included the addition of the FDMS and the flaperon structural excita-

tion system. In an effort to keep track of all external aircraft configuration changes affecting aerodynamics, dynamic

pushover-pullups and windup turns were flown to measure the drag polar changes. These effects, though small, are

evaluated in figures 18 to 21.

To assist with the structural loads clearance and the in-flight monitoring of wing deflections, the FDMS was

installed on the upper surface of the right wing beginning with flight 9. This system added a protuberance drag

component to the wing as well as probably increasing the overall parasite drag by increasing wing skin friction

drag from localized increases in turbulence. An attempt was made to measure this drag component with the limited

accuracy of the thrust measurement system. Results shown in figure 18 indicate an increased drag increment of as

much as 50 to 60 drag counts, but this is inconclusive because of the uncertainty in CDmin values obtained from

thrust calculations.
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Toaid in flowvisualizationtests,tuftsand flow cones were added during flights 12, 13, and 16. These devices

were small and did not have a measurable effect on the aircraft drag.

Beginning with flight 19, the flaperon shaker excitation system was added on each wing mid- and outboard

flaperon at the aft end of the outboard flaperon actuator housing. A modified shaker fairing was necessary in order

to enclose the shaker (fig. 19). It was suspected that this could increase the base drag behind the wing, and attempts

to measure the drag increment can be seen in figure 20. The polar shows an effect on the drag level above a CL of

1.20, but again uncertainties in the thrust-derived tTD,ni,, values made this inconclusive.

An FCS software modification beginning with flight 23 changed the ACC scheduling of the canards and strake

flaps in an attempt to correct for a saturated, full-down flaperon effect on the integration of the strake flap position.

The integration of the strake flap position with flaperons fully down was to keep the canards on their trim schedule,

but the integration logic did not work properly when the flaperons were being used for aileron control. The FCS

computers subsequently failed to recognize a full-down flaperon condition. A software change corrected the problem

by allowing the FCS computers to recognize the fully-down flaperons as saturated even with aileron inputs. Fig-

ure 21 shows the changes in the drag polar above a CL of 1.20 as a result of this trim schedule change. The change

affected the overall trimmed ACC schedule tracking of the canard and strake flaps during maneuvers and resulted

in slightly improved aircraft performance.

Drag Polar Results

Figures 22 to 27 show the results of the subsonic X-29 drag polars in comparison with both untrimmed and

ACC-trimmed drag polar predictions. Results demonstrate that the polar shapes met or exceeded predictions. Data

are shown primarily at an altitude of 40,000 ft with some additional data for Mach 0.60 at only 30,000 ft. The Mach

0.90 polar is shown at both 30,000 and 40,000 ft, where the 30,000-ft design condition only reaches a maximum CL

of 1.10 and is shown in comparison with the 40,000-ft results. The polar shapes were studied as a function of Mach

number and angle of attack only. Such effects as dynamic pressure and Reynolds number or skin friction drag on

the drag polars were not evaluated for this initial flight envelope expansion phase. Polar data was limited in angle

of attack by structural loads and aerodynamic buffet considerations. Data were primarily obtained from Mach 0.60

to Mach 0.95 at angles of attack up to 15" at the lower subsonic region and up to 12 to 13° in the transonic region.

Flight test data scatter was :t:5 percent for each polar, which was considered nominal flight quality and sufficient for

a preliminary assessment of polar shape.

Figure 22 shows the drag polar and lift curve C'L - oeresults at Mach 0.60, 30,000 ft. In the drag polar (fig. 22(a)),

the flight data are 15 to 20 percent lower in drag over the entire angle-of-attack range than the polars predicted,

based on the trimmed ACC schedule and the untrimmed dynamics. The lift curve in fig. 22(b) shows the same

improvements over predicted data and shows the change in lift curve slope at the same CL of 1.10, as predicted.

Note that the maneuver dynamics effects on the polar are negligible, as seen in the agreement between the predicted

ACC schedule and the dynamic flight results. This is due to the slow (30 sec) maneuver rate of the windup turn.

Using the C 2 as a function of Co form of the polar (fig. 22(c)), the data lose linear behavior above a CL of 0.95. This

was found to be true over the Mach number range. The Oswald aerodynamic efficiency factor and the lift-to-drag

ratio (L/D) at the design C'L of 0.92 were determined to be 74 percent and 8.36, respectively. This is better than

the predicted 70 percent efficiency factor and an L/D of 7.13. Table 4 shows summarized results of aerodynamic

efficiency factors and L/D for each Mach number compared with the predicted ACC schedule and the predicted

dynamic condition.

Figure 23 shows the drag polar and lift curve for Mach 0.70 at 40,000 ft. As shown in figure 23(a), drag improve-

ments over predicted results are still approximately 15 to 20 percent, particularly above a CL of 0.80. The effects

of higher dynamic maneuver rates (10 sec) can be seen in the difference between the two predicted polar fairings

(fig. 23(a)) and in the lift curve predictions (fig. 23(b)). Figure 23(b) also shows the maneuver dynamic effects on

11



themeasuredflightdatawitha largevariationin Ct, for a given angle of attack. These data were generated from

a rapid pushover-pullup maneuver. The apparent hysteresis band is due to the control surfaces being at different

positions (up to 4 ° difference for the canards and up to 9° difference for the flaperons) as a given angle of attack

is attained during different phases of the maneuver. The. efficiency factor and L/D for Mach 0.70 (fig. 23(c)) were

72 percent and 7.67, respectively.

Figures 24 and 25 show the drag polar and lift curve for Mach 0.80 and 0.85, respectively, at 40,000 ft. The lower-

than-predicted drag level difference for both Mach polars (figs. 24(a) and 25(a)) decreased to approximately 10 to

12 percent above a CL of 0.80 as the aircraft approached the transonic drag rise. Below a CL of 0.80, the flight data

agreed with predictions. Again, differences between the predicted ACC-trimmed and dynamic untrimmed curves

can be attributed to maneuver dynamics effects. The corresponding lift curves are shown in figures 24Co) and 25Co).

Figures 24(c) and 25(c) were used to extract the respective efficiency factors and lift-to-drag ratios. For Mach 0.80,

these were 72 percent and 7.48, respectively, compared with 70 percent and 7.19 for Mach 0.85.

Figure 26 shows the transonic drag polar and lift curve for Mach 0.90. The Mach 0.90/30,000-ft design con-

dition flight data are shown along with the Mach 0.90/40,000-ft data in the drag polar of figure 26(a). The Mach

0.90 lift curve (fig. 26(b)) contains only 40,000-ft flight data. At both Mach conditions, the flight drag data are

approximately 5 to 7 percent better than predicted above a CL of 0.80. Below this coefficient of lift, the flight results

agree well with predictions. The lift curve results of figure 26(b) show a similar trend above a 7° angle of attack.

The Oswald efficiency factor and L/D, as extracted from figure 26(c) at the design CL of 0.92, were 63 percent and

6.53, respectively, and are slightly better than the predicted ACC values of 59 percent and 6.27.

Figure 27 shows the Mach 0.95, 40,000-ft comparison between flight results and predictions. In figure 27(a), the

polar results are 5 percent better than predicted above a C,L of 0.90. Below this CL, the flight data have increasingly

more drag than predicted up to 20 percent as coefficient of lift decreases to zero. Although the lift curve results

are not as clearly defined, the data (fig. 27(b)) show the same type of trend above an angle of attack of 7 °. The

aerodynamic efficiency factor and L/D were 63 percent and 6.46, respectively.

A more accurate calculation of CD,ni, is required to completely analyze the polar shapes relative to predictions.

Where maneuver dynamic effects were large enough, the dynamic untrimmed predicted polars consistently showed

a higher drag level than the more optimum-trimmed ACC-schedule-predicted polars. Areas where the difference

between ACC and dynamic predictions were significant occurred during the more dynamic windup tum maneuvers.

Windup tum maneuvers are in general more dynamic in nature than the pushover-pullup maneuvers that were used

to generate the mid- to lower-range polar data. This shows at CLS above 0.90, where the windup turn maneuver

generated all the flight polar data. Further testing and analysis, with the calibrated engine installed, needs to be done
to fully understand the flight-to-predicted differences.

Figure 28 shows the results of comparing the X-29A Mach 0.60 drag polar shape against a band of several

modem-day fighter aircraft flight test-derived polars at the same Mach number. The X-29A predicted polar shape

for Mach 0.6 is also presented for comparison with the flight results. It should be noted that the X-29A flight test

results have not been trim-drag corrected. The figure gives a measure of the aeroperformance potential of the X-29A

FSW configuration. This is not the total story of potential aircraft performance advantages, since such things as wing

loading and thrust-to-weight ratio also play a decisive role in the ultimate performance potential of an aircraft. To

derive an aerodynamic efficiency factor, the slope was taken between a CL of 0 and 1.0. The respective efficiency

factors in this range do not represent any mission design CL of any of the comparison aircraft, including the X-29A.

It was simply a convenient place to take a useful slope and is a typical coefficient of lift range at which fighter-type

aircraft maneuver. At Mach 0.60, X-29A flight results yielded an Oswald efficiency factor of 74 percent compared

with a predicted value of 70 percent. The aircraft band at this CL range had corresponding values of 34 to 52 percent.

12



FUTURE WORK

Future performance and propulsion work include more precise drag measurements over the entire flight enve-

lope and drag polar modeling at supersonic Mach numbers. More detailed performance and drag measurements will

be possible because of the installation of a thrust-calibrated F404 engine. A more detailed analysis will be made

to better understand the differences between flight and prediction results and to correlate the pressure distribution

measurements with the accelerometer-measured aeroperformance. An effort will be made to evaluate the separate

aerodynamic performance of the wing and canard and to analyze the wing/canard aerodynamic interaction. In addi-

tion, more emphasis will be focussed on obtaining point performance data, especially at the Mach 0.9 and Mach 1.2

design points at 30,000 ft. This will include thrust-limited turning performance and energy maneuverability analysis.

CONCLUSIONS

A preliminary investigation of the subsonic lift and drag characteristics of the X-29A aircraft was conducted

and compared with predictions. It was found that the performance flight test results in the subsonic flight envelope

were equal to or better than predictions over the Mach number range to 0.95 and up to 15° angle of attack. This was

especially true at coefficients of lift above 0.90 for the induced drag polar shapes. The absolute drag level and polar

shape compared slightly better than predictions at the subsonic design point of Mach 0.90. Drag data was consistent

within itself and exhibits a typical data scatter of +5 percent. The drag polar results were not trim-drag-corrected

and contain maneuver dynamic effects due to being significantly offthe ACC control surface trim schedule. The trim

drag correction procedure developed to correct for these dynamics and other effects was unable to correct for such

large off-schedule effects. Angle-of-attack calibration on the X-29A was particularly difficult, especially with the

upwash correction. Limited flight data indicate that the apparent upwash bias was zero. The apparent t_ calibration

uncertainty could have an effect on drag polar data of up to 200 drag counts and can affect the assessment of the

aircraft aeroperformance drag polar shapes. Further analysis needs to be done to fully understand the difference

between predicted and flight results.

Ames Research Center

Dryden Flight Research Facility

National Aeronautics and Space Administration

Edwards, California, February 5, 1988
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APPENDIX -- DATA REDUCTION

To compute aircraft performance or drag polars using the body-mounted accelerometer system, the first step in

the data reduction process was to correct the linear accelerometer measurements for sensed angular velocities and

accelerations not being experienced by the aircraft e.g. These non-e.g, motions are sensed when the accelerometer

instrumentation is located away from the e.g. in the airframe. For an instrumentation package located at the e.g.,

these angular velocities and accelerations about the e.g. would be identically zero. Once the measured accelerations

were corrected to the aircraft e.g., the second step was to transform or correct those body-axis-sensed accelerations

to the aircraft wind-axis system. Drag polar and other aircraft performance are measured in the wind-axis system.

The transformation was accomplished through the aircraft angles of attack and sideslip.

The angular corrections of the accelerometers to the aircraft e.g. are

r_b = _,n + A_, r_b = nv,n + Anv, r_b = nzm + A n_, (1)

and

Ar_ = l /9( ÷Iv - _tl, + ( q2 + r2) I= _ pqlv _ pr/r)

An v = 1/9(f9I, - ÷I_ + (p2 + r2)iv _ rqI_ - pqI_)

anz = 1/g(qlx - #I v + (p2 + q2)I * _ prl_ - rqI v)

(2)

where

7_,rr_

r_

rl,_b

nv_

_b

A_

A_

A_z

L

9

P

q

T

÷

= measured

= measured

= measured

= body-axis

= body-axis

= body-axis

= body-axis

= body-axis

= body-axis

longitudinal acceleration

lateral acceleration

vertical or normal acceleration

e.g. longitudinal acceleration

e.g. lateral acceleration

e.g. vertical or normal acceleration

longitudinal accelerometer angular rate correction

lateral accelerometer angular rate correction

normal accelerometer angular rate correction

longitudinal displacement of the accelerometer from the aircraft e.g.

lateral displacement of the accelerometer from the aircraft e.g.

vertical displacement of the accelerometer from the aircraft e.g.

earth acceleration

aircraft roll rate

aircraft pitch rate

aircraft yaw rate

aircraft roll acceleration

aircraft pitch acceleration

mrcraft yaw acceleration
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Note that it is necessary that the angular velocity and acceleration sensors be collocated with the lin-
ear accelerometers.

In order to transform the body-axis e.g. acceleration measurements to the aircraft wind-axis system, the nose-

boom true angle of attack had to be calculated. For performance tests, maneuvers were flown at essentially zero

sideslip/3, so only uncorrected measurements of/3 were used, where small /3 angles have little effect on the

results. Thus,

OIT "- Olra + A Ot u + A otq + A Otbb + A Ot fb + A Ogmi s

Br=

and

a c_¢= tan-I [/'zq cos o_,_t( Vr -/'_q sin c_,n) ] (3)

where

OfT = true angle of attack

_,n = measured angle of attack

A c_u = angle-of-attack upwash correction

A oq = angle-of-attack pitch rate correction

A c_bb = angle-of-attack noseboom bending correction

A cvb -- angle-of-attack fuselage bending correction

A ¢_,ni, = angle-of-attack vane and noseboom misalignment correction

/3,n = measured sideslip angle

B'r = true sideslip angle

Vr' = true airspeed

All corrections, except pitch rate correction, are determined from airborne or ground calibrations. A zero upwash
correction bias was assumed for t, c_,,.

The body-axis accelerations were then transformed to the aircraft wind-axis system by

_II1/

n_

rh_

cos

= - sin Br'

0

sin B.r 0

cos Br 0
0 1

coso_r, 0 -sina_
0 1 0

sin a_ 0 cos c_T rhb

where

(4)

nv,,,

rhw

= wind-axis e.g. longitudinal acceleration

= wind-axis c.g. lateral acceleration

= wind-axis e.g. normal acceleration

Once the proper wind-axis aircraft e.g. accelerations were computed, this was combined with thrust, gross

weight, and dynamic pressure calculations to compute coefficients of lift and drag. Test day gross thrust was com-

puted from the General Electric F404-GE-400 mass flow method. Propulsive drag corrections were applied to the

gross thrust to obtain net thrust available, where
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and

F_

F.

F.

Fm

= test day net thrust available

= test day gross thrust

= test day ram drag, computed from engine airflow

= test day inlet spillage drag

= test day nozzle drag

Aircraft excess thrust was computed from

where

Fe_ = _w Wt (6)

Fen"

Wt

= test day excess thrust

= aircraft gross weight

Excess thrust was subtracted from net thrust available to yield net thrust required from which the coefficient of drag

was computed by

Cn = ( F,,, - F,,) /qS

Note that CD represents an untrimmed drag-corrected value. The coefficient of lift was obtained from

(7)

CL = [ r_W_ - Fgt sin(otr + i) ]/qS (8)

where

= engine-thrust incidence angle, with respect to the airframe (zero for the X-29A)

When the angle of attack and control surface deflection fell within the specified limits, the trim drag corrections

were applied to the data to obtain trimmed drag polars. Otherwise, the untrimmed values of CL and CD were used

to compare polar shapes with predictions.
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TABLE 1. AIRCRAFT GEOMETRY AND MASS CHARACTERISTICS

Total height, ft .................................................................................... 14.29

Total length, ft ..................................................................................... 48.1

Wing

Reference planform area, ft2 ..................................................................... 185.0

Reference span, ft ............................................................................... 27.2

Reference chord, ft ............................................................................. 7.216

Root chord, ft ................................................................................... 9.72

Aspect ratio ...................................................................................... 4.0

Taper ratio ....................................................................................... 0.4

Airfoil .................................................................... GAC K-Mod 2 supercritical

Airfoil thickness (root), percent .................................................................... 6.7

Airfoil thickness (tip), percent ...................................................................... 4.9

Dihedral angle, deg ................................................................................. 0

Twist, deg ......................................................................................... 7

Root incidence angle, deg ......................................................................... -5

Quarter-chord sweep angle, deg ................................................................ -33.73

Leading-edge sweep angle, deg ............................................... "................. -29.27
Vertical tail

Area, ft 2 ...................................................................................... 33.75

Span, ft .......................................................................................... 5.5
Chord, ft ........................................................................................ 6.67

Root chord, ft ................................................................................... 7.75

Aspect ratio ..................................................................................... 2.64

Taper ratio ..................................................................................... 0.306

Airfoil .................................................................................. Symmetrical

Airfoil thickness (roo0, percent .................................................................... 4.0

Quarter-chord sweep angle, deg .................................................................. 41.05

Leading-edge sweep angle, deg .................................................................. 47.00
Canard

Planform area, ft 2 .............................................................................. 37.00

Span, ft ........................................................................................ 13.63

Chord, ft ........................................................................................ 5.46

Root chord, ft ................................................................................... 7.61

Aspect ratio ..................................................................................... 1.47

Taper ratio ..................................................................................... 0.318

Airfoil .................................................................................. Symmetrical

Airfoil thickness (root), percent .................................................................... 5.0

Airfoil thickness (tip), percent ...................................................................... 3.5

Dihedral angle, deg ................................................................................. 0

Quarter-chord sweep angle, deg .................................................................. 23.08

Leading-edge sweep angle, deg .................................................................. 42.00

Deflection range, deg .................................................................... +30 to -60
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TABLE 1. CONCLUDED

Wingflap
Hingeline,percentof wingrootchord ............................................................. 0.75
Half-span,ft .................................................................................... 9.35
Area,ft2 ...................................................................................... 14.32
Rootstation,percentof winghalf-span............................................................. 0.28
Rootchord,ft ................................................................................... 2.43
Hinge-linesweepangle,deg ...................................................................... 42.0
Deflectionrange,deg ..................................................................... -10 to +25

Strakeflap
Half-span,ft .................................................................................... 2.08
Area,ft2 ........................................... ............................................. 5.21
Rootstation,percentof strakehalf-span.............................................................. 0
Rootchord,ft ................................................................................... 2.50
Hinge-linesweepangle,deg ........ . ................................................................ 0
Deflection range, deg ............................................................................ -/-30

Rudder

Hinge line, percent of vertical stabilizer chord ...................................................... 0.70

Span, ft ......................................................................................... 6.67
Area, ft 2 ........................................................................................ 7.31

Root station, percent of vertical stabilizer .......................................................... 0.18

Root chord, ft ................................................................................... 2.33

Hinge-line sweep angle, deg ........................................................................ 27

Deflection range, deg ............................................................................ +30
Masses

Empty weight, lb .............................................................................. 13,948

Useful load, lb .................................................................................. 3882

Fuel load, lb .................................................................................... 3662

Gross weight, Ib ............................................................................... 17,830

Powerplant

Engine ............................................................ single General Electric F404-GE-400

Sea level static thrust, lb ....................................................................... 16,012
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TABLE 3. AIRCRAFT CONFIGURATION CHANGES

Flight number FDMS Flaperon shaker Tufts ACC
1 None None None Original

9 Installed None None Original

12 Installed None Installed Original

13 Installed None Installed Original

16 Installed None Installed Original

19 Installed Installed None Original

23 to 104 Installed Installed None Modified

TABLE 4. SUMMARY OF SUBSONIC DRAG POLAR

OSWALD AERODYNAMIC EFFICIENCY FACTOR

AND LIFT-TO-DRAG RATIO

Mach number Aerodynamic Lift-to-drag

efficiency factor ratio

0.60

Flight data
Predicted ACC

Predicted dynamic

0.70

Flight data
Predicted ACC

Predicted dynamic
0.80

Flight data
Predicted ACC

Predicted dynamic
0.85

Flight data
Predicted ACC

Predicted dynamic

0.90

Flight data
Predicted ACC

Predicted dynamic

0.95

Flight data

Predicted ACC

Predicted dynamic

0.74 8.36

0.70 7.13

0.70 7.05

0.72 7.67

0.66 6.84

0.63 6.57

0.72 7.48

0.63 6.64

0.63 6.31

0.70 7.19

0.62 6.44

0.61 6.30

0.63 6.53

0.59 6.27

0.59 6.22

0.63 6.46

0.58 6.29

0.58 5.92
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Figure 24. Comparison of flight-measured and predicted aerodynamic characteristics, M = 0.80, a.kimde = 40,000 ft.
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Figure 25. Comparison of flight-measured and predicted aerodynamic characteristics, M = 0.85, altitude = 40,000 ft.

36



C L

1.6

1.4

Q_

1.2 -- "_

f1.0 --

,8 --

E] Test 40,000 It

_B- _ PrIKIIcted ACC

i --- Predicted dynamic

_1 J 1 1 I J 1 I
0 .05 .10 .15 .20 .25 .30 .35 .40

C D
_457

(a) Drag polar, CL - CD.

1.6

1.4

1.2

1.0

CL .8

.6

.4

.2

_IT 0 Test

-- _ _ Predicted ACC

_ f - redicted dynamicP

_ _ I ] [ I 1,,.[ [ J

2 4 6 8 10 12 14 16 18 20

_, deg
8458

(b) Lift curve, CL - oL

2.0

1.8

1.6

1.4

1.2

C 2 1.0

.8

.8

.4

.2

©

_/i S

O

I _ Test

-_ Predicted ACC

Predicted dynamic

r- _ J J I I I 1 I
0 .04 .08 .12 .16 .20 .24 .28 .32 .36 .40

C D
_459

(c) - cD.

Figure 26. Comparison of flight-measured and predicted aerodynamic characteristics, M = 0.90, altitude = 30,000
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Figure27. Comparison offlight-measuredand predictedaerodynamiccharacteristics,AK = 0.95,altitude= 40,000ft.
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